Complete Intersection Affine Semigroup Rings Arising from Posets
نویسندگان
چکیده
We apply theorems of Fischer, Morris and Shapiro on affine semigroup rings to show that if a certain affine semigroup ring defined by a poset is a complete intersection, then the poset is either unicyclic or contains a chain, the removal of which increases the number of connected components of the Hasse diagram. This is the converse of a theorem of Boussicault, Feray, Lascoux and Reiner [2]. We show that the rows of a matrix of relations for the affine semigroup form a weakly fundamental cycle basis consisting of circuits of the digraph given by the Hasse diagram of the poset, but give an example of such a matrix that is not totally unimodular. We also show that the number of edges of the Hasse diagram of a poset for which the affine semigroup ring is a complete intersection is bounded above by twice the number of vertices minus 4.
منابع مشابه
. A C ] 1 0 A pr 2 00 9 KOSZUL INCIDENCE ALGEBRAS , AFFINE SEMIGROUPS , AND STANLEY - REISNER IDEALS
We prove a theorem unifying three results from combinatorial homological and commutative algebra, characterizing the Koszul property for incidence algebras of posets and affine semigroup rings, and characterizing linear resolutions of squarefree monomial ideals. The characterization in the graded setting is via the Cohen-Macaulay property of certain posets or simplicial complexes, and in the mo...
متن کاملThe Face Semigroup Algebra of a Hyperplane Arrangement
This article presents a study of an algebra spanned by the faces of a hyperplane arrangement. The quiver with relations of the algebra is computed and the algebra is shown to be a Koszul algebra. It is shown that the algebra depends only on the intersection lattice of the hyperplane arrangement. A complete systemof primitive orthogonal idempotents for the algebra is constructed and other algebr...
متن کاملThe F-signature of an Affine Semigroup Ring
We prove that the F-signature of an affine semigroup ring of positive characteristic is always a rational number, and describe a method for computing this number. We use this method to determine the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings. Our technique involves expressing the F-signature of an affine semigroup ring as the difference of th...
متن کاملCastelnuovo-Mumford regularity of seminormal simplicial affine semigroup rings
We show that the Eisenbud-Goto conjecture holds for seminormal simplicial affine semigroup rings. Moreover we prove an upper bound for the Castelnuovo-Mumford regularity in terms of the dimension, which is similar as in the normal case. Finally we compute explicitly the regularity of full Veronese rings.
متن کاملA combinatorial proof of the Eisenbud-Goto conjecture for monomial curves and some simplicial semigroup rings
We will give a pure combinatorial proof of the Eisenbud-Goto conjecture for arbitrary monomial curves. In addition to this, we show that the conjecture holds for certain simplicial affine semigroup rings.
متن کامل