Complete Intersection Affine Semigroup Rings Arising from Posets

نویسندگان

  • Walter D. Morris
  • Klaus G. Fischer
چکیده

We apply theorems of Fischer, Morris and Shapiro on affine semigroup rings to show that if a certain affine semigroup ring defined by a poset is a complete intersection, then the poset is either unicyclic or contains a chain, the removal of which increases the number of connected components of the Hasse diagram. This is the converse of a theorem of Boussicault, Feray, Lascoux and Reiner [2]. We show that the rows of a matrix of relations for the affine semigroup form a weakly fundamental cycle basis consisting of circuits of the digraph given by the Hasse diagram of the poset, but give an example of such a matrix that is not totally unimodular. We also show that the number of edges of the Hasse diagram of a poset for which the affine semigroup ring is a complete intersection is bounded above by twice the number of vertices minus 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. A C ] 1 0 A pr 2 00 9 KOSZUL INCIDENCE ALGEBRAS , AFFINE SEMIGROUPS , AND STANLEY - REISNER IDEALS

We prove a theorem unifying three results from combinatorial homological and commutative algebra, characterizing the Koszul property for incidence algebras of posets and affine semigroup rings, and characterizing linear resolutions of squarefree monomial ideals. The characterization in the graded setting is via the Cohen-Macaulay property of certain posets or simplicial complexes, and in the mo...

متن کامل

The Face Semigroup Algebra of a Hyperplane Arrangement

This article presents a study of an algebra spanned by the faces of a hyperplane arrangement. The quiver with relations of the algebra is computed and the algebra is shown to be a Koszul algebra. It is shown that the algebra depends only on the intersection lattice of the hyperplane arrangement. A complete systemof primitive orthogonal idempotents for the algebra is constructed and other algebr...

متن کامل

The F-signature of an Affine Semigroup Ring

We prove that the F-signature of an affine semigroup ring of positive characteristic is always a rational number, and describe a method for computing this number. We use this method to determine the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings. Our technique involves expressing the F-signature of an affine semigroup ring as the difference of th...

متن کامل

Castelnuovo-Mumford regularity of seminormal simplicial affine semigroup rings

We show that the Eisenbud-Goto conjecture holds for seminormal simplicial affine semigroup rings. Moreover we prove an upper bound for the Castelnuovo-Mumford regularity in terms of the dimension, which is similar as in the normal case. Finally we compute explicitly the regularity of full Veronese rings.

متن کامل

A combinatorial proof of the Eisenbud-Goto conjecture for monomial curves and some simplicial semigroup rings

We will give a pure combinatorial proof of the Eisenbud-Goto conjecture for arbitrary monomial curves. In addition to this, we show that the conjecture holds for certain simplicial affine semigroup rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013